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Abstract. The formation of solitons and bisolitons under the conditions of Bethe splitting of 
exciton bands is analysed by means of an equivalent Hamiltonian, which is correct up to 
terms linear in the ratio of exciton bandwidth and isolated molecule excitation energy. 
Several types of solitons appear in such a system and their properties are analysed, as well 
as the conditions for bisoliton formation and their properties. It is shown that two solitons 
of the same type can always form a bisoliton, while two solitons of different types can form 
a bisoliton only under certain conditions related to the ratios of their effective masses and 
their coupling constants. Special conditions are indicated when the binding energy of two 
solitons of different type can be higher than the binding energy of two solitons of the same 
type. These conditions present the basis for the stability analysis of bound soliton states. 

1. Introduction 

The theory of solitons in molecular systems represents a very important field of physics 
today. In spite of very intensive research performed over the last few years, there still 
exists a ‘gap’. Most of the work concerns the interaction of one type of exciton with 
phonons, or the influence of Davydov splitting of exciton bands on solitons (important 
owing to interest in a-helii structures). On the other hand, to the authors’ knowledge, 
the effect of Bethe splitting of exciton bands in the study ofsolitons has not been treated 
previously. In this case, several different types of excitons can be excited in molecular 
crystals, depending on light-induced transitions in isolated molecules. 

The first studies concerning Bethe splitting of exciton zones were given in Craig 
(1955), Craig and Hobbins (1955) and Agranovir (1959). The numerical calculations of 
some Bethe splitting consequences were carried out for a one-dimensional structure in 
Hoffmann (1963) and for an antbracene crystal in Agranovii. (1968, pp 96-9). Exper- 
imental data concerning different types of isolated molecule excitations are quoted 
in Davydov (1979, pp 86, 88, 96 and 98, tables 5-8) for anthracene, naphthacene, 
naphthalene and benzole, respectively. 

It is obvious that Bethe splitting takes place when optically active materials are 
illuminated by non-monochromatic light quanta, capable of inducingdifferent molecular 
transitions. Consequently, this effect could be important in the explanation of some 
biophysical phenomena in plants illuminated by the sun. The most interesting of these 
phenomena are photosynthesis processes, which are induced by light quanta. A number 
of photosynthesis characteristics have not had, up to now, a satisfactory theoretical 
explanation. 
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So, for example, the reaction 
dol CO, + H20- K 6 H 1 2 0 6  + O2 

requiresabout5.12 eVenergy (Davydov 1979, p 174), i.e. it can be realized by absorption 
of several light quanta. The transformation of electromagnetic energy into chemical 
energy requires a finite time, much longer than the excitonic lifetime, which is of thc 
order of 10-8s. So, it is plausible to assume that light quanta in plants previously 
transform into stable excitations, such as solitons or bisolitons. whose lifetimes are 
sufficiently long to realize the reaction. 

The second example. which can be directly connected with Bethe splitting, is 
Emerson's amplifying of photosynthesis, which is observed when algae samples are 
illuminated by two kinds of photons with wavelengths of 650 and 700 nm (see Levinne 
1969, p 58). This indicates that a lot of photosynthesis characteristics essentially depend 
upon the number as well as upon the kind of optical excitations, and that the study of 
these excitons can give a good ground for photosynthesis theory. 

In order to extend this ground we shall study the types of soliton excitations in 
molecular chains where Bethe splitting of exciton bands occurs. A complete solution of 
the problem would lead to complicated equations that can be solved only numerically. 
In order to obtain at least qualitative results, we shall perform an approximate analysis 
based on the fact that the single-site excitation energy is much higher than the exciton 
bandwidth. The ratio of bandwidth to molecular excitation energy is the small par- 
ameters of our theory. An equivalent Hamiltonian linear in the small parameter will be 
formulated and we shall see that this Hamiltonian turns into asumof independent terms. 
We shall study the solitons in such a system using the standard procedure (Davydov and 
Eremko 1977, Davydov et all978, Davydov 1980, Scott 1982). 

The system described above allows for the existence of several types of excitons, so 
it  is interesting to study the conditions under which the bound states of two solitons can 
be formed. It is obvious that a bisoliton can be formed by two solitons of the same kind 
or different kinds, which makes the problem more complicated. 

The procedure of determining the approximate equivalent Hamiltonian will be 
described in section 2. Soliton states in the chain where several kinds of excitons exist 
will be studied in section 3, based on the equivalent Hamiltonian. In section 4, the 
conditions for the formation of bisolitons and their properties will be described. 

2. Equivalent Hamiltonian of exciton-phonon system with the Bethe splitting of exciton 
bands included 

Bethe splitting of exciton bands in molecular crystals occurs due to the fact that an 
isolated molecule can be excited by photons in several ways. This means that an electron 
from the ground state 0 can be excited into several states numerated as 1,Z-up to w .  A 
different exciton wave corresponds to each of the excitations of the isolated molecule, 
and the appearance of several kinds of excitons is entitled Bethe splitting of exciton 
zones (Knox 1966). It is reasonable to assume that in such a situation, there can appear 
w kinds of solitons, too. We shall analyse this possibility here and determine the 
properties of the solitons that appear in crystals where the usual 'two-level approxi- 
mation' of excitons is not valid. but a multilevel scheme for the isolated molecule must 
be accepted. 
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The Hamiltonian of the 'frozen' exciton system corresponding to w-level schemes of 
molecular excitations will be written in the form: 

H~ = XA,BLB, ,  + C D;;B;.A, - C R;;BLB,, 
"0 m a  nmci 

+ 2 D;,$;B,hB,,t - E Rf,$BTaBma, U' # a. (2.1) 
mea' nmaa' 

Operators B;* create excitations of type eon the molecule at site n. These operators 
are Bose operators, which implies that the Hamiltonian is treated in the harmonic 
approximation (LaloviC et al1969). Indices (Y and a' take the values 

a, a' E (1 ,2 , .  . . , w). (2.2) 

ThequantityA,denotes theexcitationenergyoftheisolatedmolecule, while Dand R are 
dipole4pole interaction matrixelements. A common situation for opticalexcitations is 
that A, is two orders of magnitude larger than R and D and we shall suppose that this is 
the case. Coefficients in the Hamiltonian (2.2) satisfy the following symmetry relations: 

A: = A a  o f ,  =Of: R$:* =RfZ DtF =DtZ' R$$* =R;:. (2.3) 

It is important to note that in the expression (2.1) we have separated explicitly the 
terms diagonal in types of molecular excitations (the first three terms in (2.1)) and non- 
diagonal terms. 

The usual way of treating Bethe splitting is to put the Hamiltonian (2.1) in the 
following form: 

where the matrix M is given by 

and the given bilinear form is diagonalized through some unitary transformation U which 
must be of the same order as M. This standard treatment leads in the general case to an 
algebraic equation of wth order. It is very difficult to obtain any particular conclusion in 
this approach except for the simplest case 2 X 2. 

We wish to obtain tractable results in our analysis, so we shall use an approximate 
method, consisting of the substitution of the Hamiltonian Ho by an equivalent Ham- 
iltonianthat is diagonal in molecular excitation indices. This is an approximate procedure 
based on the existence of a small parameter R / A  or D/A, which is of the order 0.01. 

In order to arrive at soliton theory, one has to take into account also the Hamiltonian 
of the phonon subsystem as well as the Hamiltonian of the exciton-phonon interaction. 
For this reason, we are looking for an equivalent Hamiltonian of the total system of 
interacting excitons and phonons. 
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For vibratingsites, we have 

f l + R + U ,  m-+m+U, , ,  Ho --* H .  (2.6) 

In the approximation linear in molecular displacements U,, one can write 

(2.7) - U,) eik.t(n-m) Z$$ + Z;:' = ZF$ + ZX kZtn'(U,, 
1 

k 

whereZstandsforRandD,andZ,are theFouriertransformsofZ,,.So theHamiltonian 
that includesexcitons and their interaction with phonons has the form 

H = C A , B ; ~ B . ,  + X D;p, t ,~ , ,  - X R;;B:~B, , ,~  

+ E D:,$B:~B.,. - E R ; $ B ; ~ B ~ ~ ,  
no: nmn nmll 

(2.8) 
m"' ""r' 

and operator coefficients satisfy symmetry conditions 

A i  = A c  (2F$)+ = 2;. 2 n m  = (RnmT b,m). (2.9) 

This implies symmetry conditions for their Fourier transforms too: 

Z._',.* = z;z' .Zk 5 &, &). (2.10) 

The total Hamiltonian of the system can be written as 

H,,, = H + H ,  

where H i s  given by (2.8) and 

H ,  = 4X [ p S / M  f Q(u, - U,,-,)*] 

(2.11) 

(2.12) 

is the Hamiltonian of the phonon subsystem. Here M is the mass of the molecule, Q is 
the force constant andp, = M U n  is the momentum of the molecule. 

The transition from the Hamiltonian (2.11) to the equivalent Hamiltonian will be 
performed using the following unitary transformation: 

=A,,, - i [i, k , ~  - 4 [.C. [ A ,  fi,ot]I 
where the Hermitian operator f i  is defined as 

(2.13) 

i = E (Xf; E h  Bfp + fg BA B,, ) 2 P P  = pPP = 0 p, v E (1.2, .  . . , w) .  
J@ v 

(2.14) 

The operators y a n d  9 satisfy the symmetry relations: 

( X P "  f8 + 18 (pP" JU ) + = fll" Is ' (2.15) 

The operators X and f are chosen in such a way to make the term non-diagonal in 
excitation indices vanish from the equivalent Hamiltonian. 
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Intheapproximationlinearinthesmallparameterq = @/(Ae - A,.), 01 # ",where 

P g  = - i&b"/(~, - A J  (2.16) 

while the equivalent Hamiltonian in the nearest-neighbour approximationcan be written 
as 

Heq 

@ means D ,  R or phonon energy, operators X and ?have the form 

P f v fg = i DPY / ( A ~  - A A  

E &JL:,B,, -E R,@LBn+i.c + B , 3 n - ~ , e )  
M1 n e  

+ 'CjrrRIB:nBBn+l.n(un+I - U,) + B : ~ : , B ~ - ~ , , ~  - U A  
no 

- x J m D ~ . + , ~ n , ( u n + I  - U"-J 

+ (g%i"D*;c:,B"-l,, +gW,i-l , ,Bn,)(U.+, - U " )  

+ E k;;"D**33,+1., + gr;"BB,',r.,B.,)(U. - un-l) 

en 

n01 

nn 

where 

Re(R*b'J$e' + 2Jgw'Dffe') 
joR = J F  + 2 E 

e' A n  - A,. 

(2.17) 

(2.18) 

JT' = N-'  kR$' sin(nk) J'"' - - W' 'c kDtd sin(&). 
k h 

One can see that the equivalent Hamiltonian (2.17) represents the sum of w inde- 
pendent Hamiltonians in terms of CY indices, which simplifies the subsequent analysis. It 
is sufficient to study just one type of soliton (index p )  and the results are generally valid. 
There still exists a restriction. It is well known that solitons can form only from excitons 
with positive effective mass. According to (2.17) this condition becomes R, > 0. This 
means that the number of different wavepackets corresponds to the number of terms in 
(2.17) with d, > 0. 

3. Solitons 

We shall suppose that pR,,  > 0 for some p, and using the standard approach study 
properties of the soliton of type p.  
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The trial function is taken in the form 

IF) = EA,”(t)B$lOe) (F, P) = 1 /Af(O12 = 1. (3.1) 

We write down Schrodinger’s equation, average it over coherent phonon states IC,) and 
perform the continuum transition; we arrive at the equation 

ifi aAP(t)/dt= (C, +kg -2R”)Ap -a2R, d2Ap(r)/.3x2 + 2 x p A ,  afl /ax 

f J 

(3.2) 
X, = - j,, + g% + g%*) 
where 

C, = f-y dx [ M (z) + ea2  (g) ’1. (3.3) 

Thecombinedequationof motion for phononoperators, averagedoverstates(y1CJ. 
in the continuum. has the form 

a2p/at2 = U; a2p/ax2 + ( 2 x , / M ) a ( A ~ * A ~ ) / a x  

U; = a2 Q / p  
(3.4) 

and the normalizing condition becomes 

The procedure for solving the system of equations (3.2) and (3.4) is a standard one, 
so we shall only quote the final results. The energy of the solitons of y type is given by 

X: E,(k) = A, - 2R, + a2k2R, - 

where 
Epk = u p k / u O  < u p x  = (2a2R,/7i)k. (3.7) 

The normalized amplitude has the form 

(3.8) 
aQ;’* exp[ikx - i E,(h)t/h] , , ~ ,  , , . , . , , . , , , . ,  ,,.,...,... A”x, f )  = - 

2 -  
where 

h, = Q,(k) = 2,$,/[a2R,Mu:(l - € & ) I .  (3.9) 
It isimportant tonote that, toeach typeofsoliton y, therecorrespondsanother type 

of lattice deformation: 

with 
E = x - U p k f .  (3.11) 

The number of different types of soliton corresponds to the number of coefficients 
R, > 0. 
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Using the general expression for the soliton energy of type (3.6), we can compare 

The first three terms in(3.6) represent the energyof the excitonof typep, which can 

(3.12) 

the general properties of the exciton of type 

be written in the form 

and corresponding soliton. 

E p ) ( k )  = 6 P - 2R P P  + R a2k2 = G(eXc) P + 4m P 02 Pk 

with effective mass of exciton of type p 

mP = h2/(2a2RP) (3.13) 

and the energy needed for the excitation of the exciton of type p 

GI“, = A P - &2/a2m P’ (3.14) 

In order to study the corresponding soliton properties, the fourth term of the general 
formula (3.6) will be written in the approximation quadratic in parameter E : ~ .  We can 
then write 

EpI) (k) GW) P + &mfd) “k (3.15) 

where 

Gp” G W  P - 6G 6GP = % a 2 m , X ~ / h 2 M 2 u ~  (3.16) 

and 

m(soL) P = mP(l  + ta2Xi/fi2M2u8). (3.17) 

One can see that the soliton excitation energy is smaller than the excitation energy 
of the corresponding exciton. On the other hand, the @-type soliton has larger effective 
mass, which can be understood, since it ‘drags’ the lattice deformation. 

4. Bisolitons 

We shall now study the general case when two solitons, one of type @ and the other of 
type v, form a bisoliton. The general expressions allow one to study the case of two 
solitons of the same kind by setting v + ,U. 

The two-particle exciton wavefunction will be written in the symmetrized form 

Ipv) = ~ A ~ ; ( t ) ( B j V 3 ~ u  + B&B&)lOe) (4.1) 

Af; ( f )  = A g ( t )  A g ( t )  = A ; / ( ( ) .  (4.2) 

IAg(t)l = a .  (4.3) 

fP 

where the coefficient A satisfies the following symmetry relations 

The normalizing condition ( p v l p v )  = 1 turns into 

fE 

Further on, we shall apply the procedure presented in Mirjanii- ef al(1983). Let us 
also mention that in the previous paper (MaSkovii: ef a1 1986) we explained why it is 
not necessary to use boson forms of fourth order in bisoliton analysis. By using this 
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procedure, we arrive at the following set of equations for the determination of coef- 
ficients A’“ and lattice deformation P: 

B S Tosic and Lj D MaSkouiC 

- (C,” + A’ + 6, - 2R, - 2R”)A’” 3AP” 
ih-- 

a t  

The following notation was used: 

xp = .UR,, - ID, + 6!kD + A%%*) 
X, = a( jRg  - jDp + grD + g&*) 

and 

C,,, = (I+% dx  [M ($)’ + Qa2 (:)I] + 1”; dy [M (z)2 + QaZ ($)2], 
-- -r 

(4.7) 
The continuum version of the normalizing condition is 

t x  

dxdylA,”(x,y; t)lz = a2/4. (4.8) I-, 
We shall look for the solution of the system (4.4)-(4.5) in the form 

AU”(x.y; t) =f , (g) f , . ( . (?)exp[ ik(p ,x  + p.y) - iwt] 

g = x - v , t  .(? = y  - U l f  f; =f, E =f” (4.9) 

P k  0 -+ P E )  P b ?  t)-+ B(.(?) X f Y  

where 

= m s / ’ X  m, m, = l i2/2R,a2 s = (.U, v). (4.10) 

Since m, and m, are effective masses of the excitons of types p and U respectively, it 
is obvious that the coordinate multiplying k in the expression for A”’ represents the 
coordinate of the centre of mass of the excitons p and v .  

Using (4.9), the system of equations (4A44.5)  becomes the system of ordinary 
differential equations: 

C p , + A , + ~ , , - 2 R ,  - 2 R - , + $ a 2 k 2 ( d , , + R , ) ( p ~ + p ~ ) - E  
ta2(R,  + R , , )  

(4.11) 
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f :  s ' # s  
_ = -  dP, 801, + X , ) ~ ~ P  
d q ,  aM(ua - U:) 

+a (4.12) 
9, =I_, d Z f : ( Z )  s, s' = 01, v) Q?, = E  V".'11 

where 

U, = a2p,k R , / h  s = (p, v ) .  

Substituting (4.12) into (4.11), we arrive at the equation 

(4.13) 

C,, +A, + A, - 2R, - ZR, t 1(R, t R, ) (p :  +pt )a2k2  - E 
b(R, t R,)a2  

(4.15) e,@, E )  = 

(4.16) 

Separation of the variables in (4.14) leads to 

d2f,/dq2 = (0 , , /2  + k) f s  - 2ar9yf: 0 
(4.17) 

ss' = ( p  , v) s ' f s  P, 1 5  9u '17 

where A is the parameter arising from variable separation. It follows from (4.17) that 

s,st E(/& v) s ' # s  q&! = E  T" = 17. 

Introducing f ,  and f v  into the expressions for 9, and ?a,,, we find 

(4.18) 

(4.19) 

(4.20) 
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while lattice deformations are given by 

B S Tosic and Lj D Maikouit 

(4.22) 

Using the last two expressions, one can find the energy of lattice deformation: 

(4.23) 

Using the normalizing condition for the coefficients A’”, we find the energy of the 
bisoliton of pv type as 

01, + X . l 4  
2 ( R , + R , ) M 2  

E,,(k) = 6, +A, -2R, - Z R ,  +t(R,  +R, ) (p:  +pt)a2k2 - 

Normalized bisoliton amplitudes are given by 

(4.25) 
In the case when a bisoliton is formed by two solitons of the same type (v -+ p ) ,  we 

obtain the energy as 

and normalized amplitude as 

(4.27) 

The first four terms in the generalexpression for the bisolitonenergy (4.24) represent 
the sum of excitations of excitons of type p and v, while the fifth term represents the 
kinetic energy of the centre of mass of the pair of excitons. 

This excitonic part of the bisoliton energy can be written as 

= G ( 2 e X e )  P U  + $M(red) U“ U2exe 2 (4.28) 

where 

G ( Z C X E )  ,U = A + 6 - fi2/aZM(‘cd) P” (4.29) 

is the excitation energy of the pair of excitons of type v and p and 

= mpmv/ (mp  + mv) (4.30) 

is the reduced mass of the pair, while 

U:,,, = W k ’  (m; + m;)/m;m:. (4.31) 
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One should note that (4.31) can be obtained from the identity 
(4.32) 

In order to study corresponding properties of bisolitons, in the sixth term of general 
$ M I ,  red) uZere 2 = t(R, + R,)(p: + pt)a2k2. 

expression (4.24) we shall keep only the terms of order E ; ” .  In this way we obtain 
E@$(&) = GCb) + A mpy (bs)&,, (4.33) 

(4.34) 

(4.35) 

where the excitation energy of the bisoliton is given by 
G(b) = G ( 2 d  - 6C 

W” P V  P U  

with 
6G,, = $ a 2 M $ F d ) k p  + ~ . ) ~ / h ’ M ’ u $  

Bisoliton mass is given by 
m(br) P O  = MW) vu [l + ia2k, + X . ) ~ / ~ ~ M ~ U ~ ] .  (4.36) 

It can be seen that the bisoliton excitation energy is less than the energy necessary 
for the excitation of a pair of excitons. On the other hand, the bisoliton mass is larger 
than the reduced mass of the pair of excitons. 

In the case of pairing of two solitons of the same type, bisoliton quantities SC,, and 
m$!,? become 

and 
SG, = 9 a 2 m , X ~ / h 2 M 2 u ~  (4.37) 

m$F) = tm,(l + 9 a 2 X ~ / h 2 M 2 u 6  0 ) .  (4.38) 
At the end of this analysis, we shall examine the conditions under which two solitons 

of type fi and v can form bisolitons of pv type. It is well known that the energy of a 
bound state formed by pairing of two free excitations must be lower than the sum of the 
energies of the free excitations. Physical interpretation of this condition is clear: two 
freeparticlesmust ‘invest’apart of their energyinordertoformaboundstate. Following 
this, the binding energy of the bisoliton is given by 

E,,(k, 4) = Ep)(k/2 + 4) + E p ” ( k  - q/2) - ELbS)(k) > 0. (4.39) 
The analysis of this condition is rather complicated, so it will be substituted by an 

approximate expression: 
(4.40) 

It is obvious that if (4.40) is fulfilled, bisolitons do form, but in a restricted range of 
wavevectors k and q. 

E P V  (0, 0) = Gpl) + GW) - G(bS) P > 0. 

The condition (4.40) can be written in the form: 

(4.41) 

where 
C, = 3 a Z n i , X ~ / h 2 M 2 u ~  > 0 @ = m,/m, > 0 

(4.42) r = 2Y3 + 3yz + 27. Y = %,I%” ’ 0 
r - (r - y4)lp < q < r + (r - y4)l/* 

The condition (4.41) is certainly satisfied for 
(4.43) 

implying that pv-type bisolitons ( f i  # v )  can be formed only for certain ratios of masses 
m, and m, and exciton-phonon coupling constants&, and x.. 
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In the case of the bisoliton formed from two excitons of the same type (@ = 1 and 
y = l), it follows from (4.41) that 

meaning that two solitons of the same type can always form a bisoliton. 

extremal value with respect to mass ratio q5, for the value 

F,,(O, 0) = 6C, > 0 (4.44) 

One should also stress that the expression (4.41) for the binding energy has an 

cp = Y(U + 2) 

max F,,” (0,O) = 4CJy + l ) / y z  

and the form of corresponding extremal function r is given as 

cp = Y(Y + 2). (4.45) 
Comparing the expressions for bonding energies of two solitons of the same and of 

different types, wecanconclude that, undercertainconditions, twosolitonscan bemore 
strongly bonded. This happens for the mass ratio m,/m, = cu,/x,)(x,/,y, + 2) and 
when the coupling constant ratio falls into the range 

(4.46) 0 < x,/x, < (1 + fl)/3. 

5. Conclusions 

The results of the analysis of properties of solitons and bisolitons in molecular chains 
with Bethe splitting of exciton bands can be summarized as follows: 

(i) The Hamiltonian of the exciton system with Bethe zone splitting can be unitarily 
transformed into an equivalent Hamiltonian that is the sum of the Hamiltonian of each 
one corresponding to a single band. Thisequivalent Hamiltonian is an approximate one, 
and the error introduced is of the order of the square of the ratio of exciton bandwidth 
and isolated molecule excitation energy, The accuracy of that degree can be considered 
satisfactory in the case of an exciton system, because the above-mentioned ratio is of 
the order of 10”. 

(ii) Soliton excitations in the system are analysed by means of the equivalent Ham- 
iltonian. The number of soliton branches need not be equal to the number of exciton 
branches. because solitons are formed only by excitons with positive effective mass. In 
the case when a soliton is formed, comparison between exciton and soliton properties is 
made. The result indicates that the soliton is excited more easily, while its effective mass 
is higher than the exciton effective mass. 

(iii) Analysis of the behaviour of bisolitons in the system has shown that bisolitons 
can be formed from solitons of same type as well as from solitons of different types. 
Bisolitons can be always formed from the solitons of the same type, while solitons of 
different types can form a bisoliton under particular conditions for the effective masses 
andcoupling constantsof excitons involved. For very particularconditions. this bisoliton 
can be bounded more strongly than the bisoliton formed by solitons of the same type. 

Finally, we wish to stress once again that, owing to the limitations mentioned in (i), 
our results should be accepted as a qualitative description of the behaviour of solitons 
in a molecular chain with Bethe splitting of exciton bands. 
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